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J. Phys. A: Math. Gen. 17 (1984) 75-85. Printed in Great Britain 

On the inverse problem of the calculus of variations in field 
theory 

Marc Henneaux 
Center for Theoretical Physics, University of Texas at Austin, Austin, Texas 78712, USAt 

Received 27 June 1983 

Abstract. The inverse problem of the calculus of variations is investigated in the case of 
field theory. Uniqueness of the action principle is demonstrated for the vector Laplace 
equation in a non-decomposable Riemannian space, as well as for the harmonic map 
equation. 

1. introduction 

From the standpoint of theoretical physics, the uniqueness aspect of the inverse problem 
of the calculus of variations is at least as important as its existence aspect. Indeed, it 
is generally assumed that all 'fundamental' (as opposed to 'phenomenological') physical 
theories derive from an action principle. What is generally less known, however, is 
that they may derive in some instances from more than one such principle, and that 
this leads to different quantum theories. Examples exist in Newtonian mechanics 
(hydrogen atom-see Henneaux and Shepley (1982)) as well as in field theory (SU(2) 
chiral model (Nappi 1980)). 

It has been argued recently that theories possessing different variational descriptions 
form a 'set of measure zero' in the space of all theories derivable from a Lagrangian 
(Henneaux 1982a, b, Henneaux and Shepley 1982). The question arises, however, 
whether the field theories of physical interest would not precisely belong to that set 
because of their particular properties (symmetries, locality of the field equations. . .). 

The purpose of this paper is to provide a beginning of an answer to that question. 
More precisely, given a set of second-order quasi-linear field equations 

aZ,(U', U f , X m ) U ; + b ~ ( U c ,  U j f ) , X " ) = O  (1.1) 

belonging to a fairly general class, it is proven that there is one and only one Lagrangian 
function 9( uc, U:, x " )  (up to  a multiplicative constant corresponding to a change of 
units and an 'immaterial' divergence) such that the variational equations 

u / 6 u A =  -ai(aS/auf)+a9/auA = o  (1.2) 

are equivalent to the system (1.1). x" (m = 1 , 2 , .  . . , n)  are here the independent 
variables, whereas u A  ( A  = 1 , .  . . , M )  are the unknown functions. U? and U; are 
respectively their first- and second-order partial derivatives. Besides, the summation 

t On leave from: Universitk Libre de Bruxelles, Campus Plaine CP 231, B-1050 Bruxelles, Belgium. 
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convention over repeated indices is adopted and aiA denotes the total partial derivative 
of the function A with respect to x i  (aiA = aA/dx i+ (aA/duB)u?  +. . .). 

The meaning of this result is that the variational description of the usual field 
theories is essentially unique (when it exists) provided one makes the following 
restrictions: 

(i) the action is the integral j d x ' Y  of a function Y that only involves xk, u A  and 
its first partial derivatives u p  (if one gives up that locality requirement, then there is 
obviously an infinity of variational principles for ( l . l ) ,  just as there are many functions 
R + R which possess the same extrema); 

(ii) the variational principle is stated in terms of the variables uA, which obey 
second-order partial differential equations (if one introduces additional variables .za 
and replaces the system (1.1) by an equivalent first-order system involving u A  and z p ,  
one may lose uniqueness, as in classical mechanics (see appendix and Havas 1973, 
Henneaux 1982b, Hojman and Urrutia 1981). 

The above locality requirement, which seems natural at first sight, should be 
somewhat relaxed in a future study, for there exist systems with the following property: 
they can be described by two sets u A  and i iA  of independent variables which both 
obey second-order partial differential equations derivable from a Lagrangian, but 
which are related through a non-local transformation (see 0 6 ) .  The corresponding 
Lagrangians lead to different quantum theories. The present analysis is incapable of 
deciding which description is the correct one. It is only by additional criteria, concerning 
for instance they physical meaning of U" and C A ,  that one can select the 'good' 
Lagrangian. This problem falls beyond the scope of our study. 

The paper is organised as follows. We first consider arbitrary second-order partial 
differential equations 

TA(UB, U;, x") = o  (1.3) 

and write down the necessary and sufficient conditions that TA must obey in order to 
be the variational derivatives SB/SuA of some function Y ( u B ,  U:, U;, x"). When 
these conditions are fulfilled (TA = 6 3 / 6 u A ) ,  we write explicitly Y in terms of TA as 
an expression involving a single line integral (Vainberg 1954, Tonti 1969). 

After a general discussion of the inverse problem in the quasi-linear case, we then 
turn to the Laplace tensor equations in a curved space, 

A u ~ ~ ~ ~ ' ~ G ~  = O  (1.4) 
where the stroke denotes the covariant derivative in the Riemannian metric gii. We 
show that the Lagrangian is essentially unique for scalar field ( u A  = U), as well as for 
a vector field (U" 

We then consider a set of scalar fields coupled through a harmonic mapping type 
of interaction Misner (1978). We again show that the Lagrangian is essentially unique 
when the metric of the 'image' space is non-decomposable. This case covers the 
nonlinear v-model, wich we discuss in some detail in 0 6 .  

u i )  provided that the metric gij is non-decomposable. 

Finally, the appendix is devoted to the study of first-order systems. 

2. The integrability conditions 

Let TA(uB, U?, u;,xm) be n functions of uB, U?, u g  and x". The necessary and 
sufficient conditions for the existence of a functional S [ u B ]  = -Y( uB,  U?, U;, x") d"x 
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such that the functional derivatives DS/DuA(x") be equal to TA, i.e. such that 

is that the second functional derivatives commute, DTA(x)/DuB(x')  = 
DTB(x')/DuA(x). These conditions read explicitly 

a T A / a U t  = aTB/aU$, (2.2) 
a T A /  a U f + TB/ a U ;f = 2ai (a TB/ a U 2 ) , (2.3) 

Indeed, when TA is of the form (2.1), the polynomials 

are self-adjoint, in the sense that VATA( U') = VATA( V B )  + a J i  (De Donder 1935, 
p 204). This implies (2.2)-(2.4). Conversely, when the relations (2.2)-(2.4) hold, the 
Lagrangian 

r i  

is such that 6.=.%'/6uA = TA, as can be checked by direct computation (Tonti 1969). 
Note that one cannot always get rid of the second-order derivatives U: from 3 by 
partial integration when the number of independent variables exceeds one (example: 
2= uI3uz4) leads to second-order equations which are not quasi-linear). 

Upon using (2.3), one can replace (2.4) by 

(2.7) 

For one degree of freedom ( M  = l ) ,  this equation is an identity. 
The inverse problem of the calculus of variations amounts to determining whether 

one can replace the system (2.1) by an equivalent system TA(uB, U:, U;, x'") = O  such 
that FA are the variational derivatives of some function and, if the answer is affirmative, 
in how many ways this can be done. 

In the case of quasi-linear equations, 

(2.8) 

one considers only equivalent systems which are also quasi-linear. We will assume 
from now on that the equations TA = 0 are independent for different values of A and 
that there is no way to obtain relations among uc, U:, x'" (not involving u t )  by 
combining the TA's. The conditions for the equivalence of TA = 0 with FA = 0 then read 

TA = M ~ ~ T ~  (2.9) 
for some non-singular matrix M ~ ~ ( u ~ ,  uf, x"). 

For given TA's, the conditions (2.2)-(2.4) (with TB replaced by F E )  become partial 
differential equations for the 'integrating factors' MAB. It is only in the case n = 1,  M 
arbitrary (Newtonian mechanics) or M = 1 ,  n arbitrary (one scalar field) that these 

T A -  AB(^ C u f ,  x").;  +bA(Uc, Xm), 
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equations have been systematically investigated (Newtonian mechanics: Crampin 
(1981), Henneaux (1982a, b), Marmo and Saletan (1977), Sarlet (1980, 1982) and 
references therein; one scalar field: Anderson and Duchamp (1982)). For both n and 
M greater than one, the problem is more complex-a situation not unfamiliar from, 
for instance, the Hamilton-Jacobi theory (Lepage 1936, Dedecker 1977). 

3. Uniqueness of the action principle 

Let us now assume that TA can be written as S2?/SuA for some 2, i.e. obeys (2.2)-(2.4), 
and let us investigate under what conditions the action principle is unique. Clearly, 
the function p 2 + a i J i  with p E Ro is also an acceptable Lagrangian, but since it leads 
to the same canonical and hence quantum description, it will be called 'equivalent' to 
2'. We want to determine whether there exist other functions 9 not of the above 
form so that the variational equations Sg'/Su" = 0 are equivalent to TA = 0. Such 9 ' s  
will be called inequivalent to 2 because they lead to a different canonical structure 
(although the trajectories are the same). 

Theorem. If the only solution to 

is MAc = pSAC, with p E Ro and SAc the Kronecker symbol, then the Lagrangian 2 
is essentially unique in the sense that all the functions L? such that Sg ' /&uA = Oe TA = 0 
are equivalent to R 

The demonstration is straightforward: when the TA's obey (2.2)-(2.4), equations 
(3.1)-(3.3) are equivalent to (2.2)-(2.4) with FA=MABTB in place of TA. Thus, a 
necessary and sufficient condition for MAB to be an integrating factor is that it fulfils 
(3.1)-(3.3). But if the only solution to these equations is pSAC, with p E Ro, one must 
have TA =pTA. Accordingly, 9 is equal to p9+a iJ i ,  by a well known theorem on 
the calculus of variations (see e.g. De Donder 1935, p 14). 

We shall from now on assume that aABii does not involve the first-order partial 
derivatives U?. 

Theorem. When aaABiJ/au? = 0, the integrating factor MAc obeys 
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Indeed, the terms linear in the second-order partial derivatives U ?  must vanish 
separately in (3.2). When aaA;l/auf = 0, these derivatives only occur through the 
first three terms, which easily leads to the desired result upon taking account of the 
symmetry property U ?  = U:. 

In the cases treated below, as well as in most physical applications, the quantities 
aAB” possess the factorisable form 

aA;I(uD, xm) = aAB(uD, X ~ ) ~ , ] ( U ~ ,  x”) (3.5) 

where the matrix aAB is non-singular (det a A B  # 0) so that the equations TA = 0 are 
independent and all involve effectively the second-order derivatives. 

Theorem. If the rank of h” is greater than or equal to two, the multiplier MAB is 
velocity independent (aMAB/auF = 0) .  

Proof. The equations (3.4) are linear in aMAC/auF. At a given point XI, one can, 
without loss of generality, assume h” = ~ ‘ 6 ’ ~  (no summation on i), with ( E ’ ) ’  = 1 or 0, 
since the equations are invariant under linear transformations in the tangent space 
and since h” is symmetric. 

Multiplying (3.4) by h, = ~ ‘ 6 , ~  and summing over i ,  j ,  one first gets 

n’(aMAD/aUf + a M B D / a U ; ; \ ) = 2 E f a M A B f a U ~  (3.6) 
(no summation over k ) .  n’ S n is here the number of non-zero eigenvalues of h’,, and 
the index D in MAD=MDA is lowered with aCD Eliminating (dMA, /auf)+  
(aMBD/aU;;\) from (3.4) by using (3.6), one then easily infers 

(3.7) 

(no summation over k ) .  Multiplying (3.7) by hjk and summing over j and k ,  one finally 
finds 

( 2 & : / n ’ - E ;  -?l‘)aMA,/aUf =o.  (3.8) 

aMAB/auF = 0 (3.9) 

No matter what E ,  is, (3.8) implies 

since n’ 3 2 (and det (YAB # 0). 

If one does not make additional assumptions about TA, it is difficult to go further 
in the integration of equations (3.1)-(3.3) (except when .M = 1 (Anderson and 
Duchamp 1982)). We will thus treat two particular cases which are wide enough to 
contain most non-singular systems of physical interest and €or which the conditions 
(3.1)-(3.3) have a clear geometrical meaning. As we shall see, there are instances 
where non-trivial integrability factors exist which involve u A  or x i .  

The first example to be considered is the tensor Laplace equation, 
- 

TA=JgaABu;,g” =JgaABhuB (3.10) 

where the stroke denotes the covariant derivative in the Riemannian metric g,, (of 
determinant g # 0; h” = J i g ” ) .  uB  is a tensor field and aAR the ‘tensor product’ 
metric induced by g,, in the linear space of the uB’s ( ~ A B  is a combination of g, and 
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only involves xm-see below). uBli reads explicitly 
uBj l  = +rBciu C (3.11) 

where rBCl are combinations of the Christoffel symbols. 
The second case to be treated is the 'harmonic map' case, 

(3.12) 

where u B  are now M scalar fields which define a mapping from the spacetime manifold 
(XI) into the curved M-dimensional space (U") endowed with the line element 

d a 2 = a A B ( U C )  dUA dUB (3.13) 

1- T A  = d gffAB( h U B  + r B c D U  FUFg'') 

(Misner 1978). TBCD( u E )  are the corresponding Christoffel symbols. 
The first example is linear in the uA's. The second is not. 

4. The tensor Laplace equation 

With aAB1' given by (3.5), the condition (3.2) reads 

since aMAC/duF = O .  Because TA is here linear in U:, the only term which contains 
the derivatives U? is the first one, and it must vanish. Hence one finds that MAB is 
independent of uc, 

a M A B / a U c  = 0. (4.2) 

MABI~ = 0 (4.3) 

Using this result, one can rewrite (4.1) as 

where we have taken the symmetry conditions (4.1) into account, as well as the fact 
that the covariant derivatives of CYAB vanish. 

When (4.3) holds, the remaining condition (3.3) is satisfied: the Lagrangian 
- 

(4.4) A A i j  9 = $d'gMABu, i 1 j g 

yields the correct equations of motion MABTB = 0 (det M A E  # 0). Thus, the complete 
resolution of the inverse problem amounts to study the equation (4.3). 

The condition (4.3) becomes Mi = 0, i.e. M =constant. The Lagrangian is essentially 
unique in agreement with a theorem by Anderson and Duchamp (1982). 

The condition (4.3) reads 

( a )  Scalarcase ( u A = u U , M = 1 , a A B = 1 )  

( b )  Vector case ( u A  = ui, M = n, (YAB = g i j )  

M,j,k = 0. (4.5) 

In a Riemannian space (positive definite metric), a non-trivial symmetric tensor obeying 
(4.5) exists if and only if the metric is decomposable, i.e. if there exists a coordinate 
system t", y"'  ( a  = 1 , .  . . , f i  < n ;  a = ii+ 1 , .  . . , n )  such that 

(4.6) 
Going to an orthonormal frame in which MI, is diagonal, one can indeed define a new 

ds2=glI  dx' dxJ=ga,(t') d t"  dtb+gQ.b. (y" )  dy" 'dyb ' .  
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tensor f i i j  by rescaling the eigenvalues of Mil to 0 or 1 in such a way that (i) GijIk = 0 ,  
(ii) f i & f i k ,  = fiij (idempotency) and (iii) f i i ,  = aji (with f i i j  f pgii). Equation (4.6) 
then follows (Petrov 1969, p 350). The reducibility of the metric is a very strong 
condition. It is not fulfilled by a generic metric, for which the only solution to (4.5) 
is pgij ,  j~ E R. In the pseudo-Riemannian case, the condition (4.5) is also very strong 
(although it is not equivalent to (4.6) when some of the eigenvectors of Mil are null). 
One can thus conclude that the uniqueness of the Lagrangian-up to the above 
equivalence relation-is generally guaranteed for the vector Laplace equation. 

In the particular case of flat space, which is obviously decomposable, the general 
solution to (4.5) is Mil =constant (in Minkowskian coordinates). There are thus 
n( n + 1) /2  inequivalent families of Lagrangians. 

The equation (4.3) reads this time 
( c )  Second-order tensor case ( uA 3 ui', M = n') 

MijklJm = 0 (4.7) 

(4.8) 

(except in two and four dimensions, where there is a fourth parameter corresponding 
to E i j g k l f  E k l g i j  and &,jklr respectively). The Lagrangian (4.4) is thus not unique. One 
recovers uniqueness, however, by requiring U" to be symmetric and traceless, or 
antisymmetric (and derivable from a potential in four dimensions). 

A similar degeneracy occurs for the higher-order tensor Laplace equations (which 
are physically less interesting). 

Let us finally note that the condition MABlr = 0, which expresses that MAB is 
covariantly conserved, should be compared with a theorem by Hojman and Harleston 
(1981), which relates integrating factors with constants of the motion in classical 
mechanics (see also Carifiena and Ibort 1983, Crampin 1983, Gonzalez-Gascon 1982, 
Henneaux 1981, Lutzky 1982 etc). 

with Milkl = Mklij. In the generic case, its general solution depends on three parameters, 
M . .  rlkf = a ( g i k g j l  + g i l g l k )  + P(gikgj f  - g r l g j k )  + Ygijgkl 

5. The harmonic map equation 

Inserting (3.12) into (4.1), one finds 

-2 ( aMBC 1 a U f M B ~  rC.FD - MFc r F B D )  U p  a,grk& - 2 (a  MEc / a x  ) (YcBgrk d s  
(5.1) 

where again the symmetry of MAB has been used. The terms linear in U? and 
independent of u p  must vanish separately, which implies 

aMBClax' =o,  MBC,D = 0 ,  (5.2) 
where ; is the covariant derivative in the metric aAB. The equations (5.2) are the 
necessary and sufficient conditions that MAB must obey in order to be an integrating 
factor (with det MAB # 0). The Lagrangians read 

3 = & g 1 ' M A B U f u ~ .  (5.3) 
If the Riemannian metric of the 'image' space is non-decomposable, as it is generally 

the case, the only solution to (5.2) is MBc = pSBCand the Lagrangian (5.3) with 
MAS = CYAB is again essentially unique. 
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6. The nonlinear o-model 

The nonlinear a-model being a particular ‘harmonic map system’ (the image manifold 
is 0(3)), it follows from 0 5 that its Lagrangian is essentially unique. This means that 
there is one and only one equivalence class of Lagrangians which yield local equations 
(in u A )  equivalent to the usual equations of the nonlinear a-model. 

Now, let V be the space of (regular) functions v of R’ obeying v ( O , O ) = O ,  
A v ( x ’ ,  0) = 0 and let W be the space of (regular) functions w of R’ obeying w(0 ,O)  = 0, 
A w ( 0 ,  x’)  = 0. The correspondence implicitly defined by 

0 2  = w1, 
(6.1) 

W Z  = - u1 + lo*’ A U( z, x’)  dz, v1 = - w2 + 1: A w( x ’ ,  z)  dz, 

w1= U’, II i 
is a non-local bijective correspondence between the spaces V and W. For instance, 
( x ’ ) ’ - ( x ’ ) ’  is mapped on -2x’x’ whereas x ’ + ~ ( x ’ ) ~  is mapped on f x ’ ( x ’ ) ’ - x ’ .  

It is easy to check that the subspace of V obeying A V  = 0 is mapped on the subspace 
of W defined by A w = 0 and vice versa. Thus, although the correspondence (6.1) is 
non-local, if v obeys the local (in U )  Laplace equation A v  = 0, w also obeys the local 
(in w )  Laplace equation A w  = 0. But the action integral $ (Vu)’ d2x which leads to 
the Laplace equation for v is clearly inequivalent to 4 5 (V w)’ d’x. For instance, the 
Hamiltonian structures which they yield are different: although the ‘equal time’ bracket 
[ v l ( x ’ ,  x ’ ) ,  v z ( x l ,  n’)] is well defined and equal to S,(x’ ,  f ’ )  with the first Lagrangian, 
it is undefined if one adopts the second one (one would have to go ‘on shell’; x ’  is 
referred to as the ‘time’, u1 being the ‘velocity’). The criterion of locality is accordingly 
too weak to select one single Lagrangian in such circumstances: one needs to know 
what are the ‘basic’ variables. 

Nappi (1980) has found a generalisation of the above transformation in the case 
of the two-dimensional a-model. Thus, one can generate for that model two 
inequivalent Lagrangians, each local in its corresponding variables (and each unique 
if one insists on locality in terms of its set of basic variables), but leading to different 
quantisations. 

It is not known whether such transformations exist for all dynamical models. We 
feel, however, that additional physical criteria (e.g. switching on of an appropriate 
interaction) can decide which Lagrangian to adopt when there remains some ambiguity. 
This problem falls, however, beyond the scope of this paper. 

Acknowledgments 

The author is grateful to Willy Sarlet for drawing his attention to the work by Anderson 
and Duchamp. 

Appendix 

We study here first-order partial differential equations 

TA( uB, U?, x ” )  = 0 

derivable from a Lagrangian. 
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It follows from 0 2 that TA is a variational derivative if and only if 

a T A / a U f  + a T B / a U ; f  =o,  (A2) 

a TA/ a U = a TB/ a U - a/( ( a  T B /  a U ; ) . ('43) 

When spelled out in detail, (A3) reads 

The equality (A4) can hold only if the term containing the second-order derivatives 
vanishes, i.e. 

d 2 T B / a U 2  + a 2 T B / a U f  a U ^ ,  =o.  (A5) 
These equations have already been encountered in a related context (Dedecker 1978, 
Henneaux 1978 appendix A, Hojman 1983), and it is easy to see that their general 
solution is 

( 0 ) '  I D where the coefficients a A,-," cm only involve U and x k  and are odd for the permuta- 
tions of the indices C1, . . . , C, ( i l ,  . . . , i ,  being fixed) as well as for the permutations 
of the indices i , ,  . . . , i, ( C,,. . . , C, being fixed). r is equal to n when n C M or to 
M when M c n (r = min( n, M ) ) .  

Because of (A2),  (;)kc: ce must also be antisymmetric for the permutation of the 
index A with any of the C's, so that these functions can be viewed as the components 
of the (a + 1)-forms 

(A71 
(a) (a11 1 
U ' I  ' a = [ l / ( a + l ) ! ]  &c," C , + , d u C ~ ~ d u C 2 ~ , , . ~ d ~ C ~ - ~  

( ( E )  such forms for a given a). 

explicitly. One gets 
The geometric meaning of the remaining equations (A4) can now be written more 

( U )  ( n + l )  
(A81 d a ' I  ' 0  + a  a ' - / a x k  = 0 

( r+ i )  
with the convention a = O .  

When the equations (A6)-(A8) hold, the Lagrangian is given by 

( 0 )  

where the a-forms b ' I  ' 0  

(4 
b '1 ' 9  = (11 a !) b>, '"c, duCl A . . . A duC- 

are antisymmetric in the indices i l  . . . i, and are determined by 

(e) ( U )  ( , + I )  d b I I  Io = a ' I  '.+a b k r i  ' - / a x k  
(rei) 

(with b = O ) .  
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In the case of quasi-linear equations, 

(A121 
(1) (0) 

TA = e XB(uc, xm)uB + e ,(U', x m ) ,  

a necessary and sufficient condition for the existence of a variational principle leading 
to quasi-linear equations equivalent to TA = 0 is, as we have just seen, that the equations 
in M , ~ ( U ~ ,  x m )  

(A13) 

(A141 

d(M(i ) )+ak(Mii )k)  = O ,  (A151 

possess a solution with non-vanishing determinant. Here, M 8 ' and M 8 are the forms 
iMAC(t)l&B duA A duB and MAc(;), duA, respectively. 

It is not our purpose to give here a full discussion of equations (A13)-(A15). We 
will simply integrate them explicitly in the case of the two-dimensional scalar Laplace 
equation A u  = 0 rewritten in first-order form, 

M,c(~) i c(l) 
CB = -ME e CA, 

( U i  - 
d ( M 8  )-0,  

(1 ) .  (0) 

T = - ~ 1 -  u2 - 
0- 1 2 - 0 3  

T 1-  = U : - U ' =  0 ,  (A17) 

T 2 -  = u 0 - u 2 = 0 ,  2 (A181 

L =  u 'u :  + U 2 U ~ - t [ ( U 1 ) 2 + ( U 2 ) 2 ] .  (A191 

(U = U'). These equations derive from 

One has 

0 -1 0 0 0 -1 
(AZO) ( 1 )  o * a = j :  : :), 'Q)L=(; : 8). 
(A21) 

(0) 
8 A = a ( o  -U1 - U 2 ) ,  

where a is a real parameter equal to one in our case, but which will be allowed different 
values later on. 

The first equation (A13) imposes that M must be a multiple of the identity, 

with A = A(uC, x"). Equation (A15) then reads 
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Taking the Lie brackets of these expressions, one finds the additional equation 

aA/auo = o (a # O ) .  (A271 
Hence, A is a function of R = ( u ' ) ' + ( u ~ ) ~  only when a # 0. 

( 1 ) .  
Requiring finally that d(h 8 ') vanishes too, one finds that A is a constant (a # 0). 

The above Lagrangian is thus essentially unique. When a = 0, A can be a function of 
U' and the Lagrangians are given by A ( u o ) [ u ' u ~ + u 2 u ~ ] .  This situation should be 
compared with Newtonian mechanics ( n  = l), where equations (A13)-(A15) always 
possess an infinity of inequivalent solutions. 
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